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The phase behavior of Ising spin fluids is studied in the presence of an external magnetic field with the
integral equation method. The calculations are performed on the basis of a soft mean spherical approximation
using an efficient algorithm for solving the coupled set of the Ornstein-Zernike equations, the closure relations,
and the external field constraint. The phase diagrams are obtained in the whole thermodynamic space including
the magnetic fieldH for a wide class of Ising fluid models with various ratiosR of the strengths of magnetic
to nonmagnetic Yukawa-like interactions. The influence of varying the inverse screening lengthsz1 and z2,
corresponding to the magnetic and nonmagnetic Yukawa parts of the potential, is investigated too. It is shown
that changes inR as well as inz1 andz2 can lead to different topologies of the phase diagrams. In particular,
depending on the value ofR, the critical temperature of the liquid-gas transition either decreases monotoni-
cally, behaves nonmonotonically, or increases monotonically with increasingH. The para-ferro magnetic tran-
sition is also affected by changes inR and the screening lengths. AtH=0, the Ising fluid maps onto a simple
model of a symmetric nonmagnetic binary mixture. ForH→`, it reduces to a pure nonmagnetic fluid. The
results are compared with available simulations and the predictions of other theoretical methods. It is demon-
strated that the mean spherical approximation appears to be more accurate compared with mean field theory,
especially for systems with short ranged attraction potentials(when z1 and z2 are large). In the Kac limit
z1,z2→ +0, both approaches tend to nearly the same results.
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I. INTRODUCTION

During the past decades, much attention has been paid to
the phase behavior of ferromagnetic fluid models with
coupled spin and spatial interactions[1–20]. The investiga-
tions have been carried out using the mean field(MF) theory
[1–7], the method of integral equations[8–13], as well as
Monte Carlo (MC) simulation techniques[7,8,11,14–20].
They dealt mainly with simplified models belonging to a
so-called ideal class of spin fluids, where the attractive part
of nonmagnetic interactions is absentsR=`d. Moreover,
these models were considered, as a rule, in the absence of an
external magnetic fieldsH=0d. At finite values ofR, it has
been established[1,2,4,5] that, depending on the relative
strength of magnetic interactions, the gas, liquid, paramag-
netic, and ferromagnetic states in the system may form phase
diagrams of different topologies. For instance, an order-
disorder liquid-liquid phase transition may appear addition-
ally to the gas-liquid one.

A complete picture of the phase diagram topology can
only be obtained if the magnetic field is includedsHÞ0d in
the consideration. Then the phase diagram shows the two
other critical lines(so called wings) meeting the magnetic
transition line in theH=0 plane at the tricritical liquid-liquid
transition [4,5]. The gas-liquid critical point extends to a
critical line in the magnetic field. Whether the gas-liquid or
liquid-liquid critical line ends in a critical end point and the
corresponding other critical line tends to infinite magnetic
field depends on the model parameters mentioned. This en-
larges the number of different “phases” in the global phase
diagram(the regions where the different topologies exist in

the space of the microscopic model parameters, such as in-
teraction strength or range of the potentials).

The global phase diagrams in one-dimensionalR domain
were obtained for Ising and Heisenberg spin fluids within
MF theory [4,5]. To our knowledge, no such diagrams have
been investigated up to now using the integral equation
method. As is well recognized, the latter method leads to
more accurate predictions. It takes into account pair correla-
tions between particles in spin space, which are completely
ignored by the MF approach. Previous integral equation
studies on magnetic fluids have been restricted exclusively to
ideal systems with Heisenberg spin interactions in the ab-
sence of an external field[8,9] or only included a few non-
zero field values[10–13]. No integral equation calculations
have been performed for nonideal spin fluids atHÞ0, even
within the well-known Ising model. Note that here we are
dealing with genuine fluid models, meaning that the spatial
positions of spins are distributed continuously, contrary to
simplified lattice gas schemes[21–23], where the spins are
positioned on fixed lattice sites.

Due to the discrete character of spin reorientations in the
Ising fluid, it can be mapped onto a binary nonmagnetic mix-
ture with symmetric interparticle interactions. In this context,
it should be pointed out that in recent years a lot of papers
have been devoted to study phase properties in symmetric
mixtures by means of MC simulations, the MF theory, as
well as the Ornstein-Zernike(OZ) integral equation method
[24–31]. Various closure relations, including the standard
mean spherical approximation(MSA) [32] and a self-
consistent OZ approach(SCOZA) [29,33], have been ex-
ploited within the latter method. Note that these studies con-
sidered in fact only the case when the chemical potentials of
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different species are fixed to be equal. In the language of
Ising fluids this corresponds to the absence of an external
magnetic field.

It has been realized that despite its relative simplicity, the
MSA is able to give reliable results for the coexistence phase
boundaries including the location of critical points. The ac-
curacy of the MSA scheme gets worse only when calculating
critical exponents. On the other hand, the more cumbersome
SCOZA technique can provide us with highly precise results
for the phase boundaries and it remains accurate even near
criticality [33]. The other concept is the hierarchical refer-
ence theory(HRT) [30,34–36] that combines features of the
renormalization group theory(RGT) and theoretical liquid-
state approaches and allows to reproduce some critical expo-
nents more precisely with respect to the MSA. For instance,
the critical exponentb (which gives the curvature of the
coexistence curve near the critical point) takes the values
7/20 and 0.345 within the SCOZA and HRT, respectively.
They are close to the experimental and RGT predictionb
=0.327, contrary to the MF and MSA valueb=1/2 (see Sec.
III B ).

However, the SCOZA has so far been implemented only
for a restricted class of hard-sphere-Yukawa potentials. For
these potentials, some solutions within the MSA ansatz can
be derived[37–39] in a semianalytical form as a set of non-
linear algebraic equations(which should further be solved
numerically). The SCOZA employs such solutions at an in-
termediate stage of the calculations. In the presence of po-
tentials of any other structure, for instance, of Lennard-Jones
(LJ) type or potentials with a soft-core(SC) repulsion part,
the mathematical structure is less amenable. In addition, the
SCOZA enforces the consistency between different thermo-
dynamic routes in a somewhat phenomenological manner by
introducing an artificial “temperature” depending on density
and concentration. The high level of sophistication of the
SCOZA and HRT concepts leads, in turn, to substantial com-
putational problems, when applying them to more realistic
interaction potentials. Therefore, for our problem we stick to
a variant of the MSA, being well aware of the properties of
this approximation near the critical point.

In the present paper, the global phase diagram of the Ising
fluid is investigated on the basis of the OZ integral equation
method with a soft MSA closure. This allows us to obtain the
complete thermal phase diagrams covering the whole range
of the relative strength of magnetic interactions and other
parameters of the interaction potentials. The dependencies of
the critical temperatures and densities on the external field
are analyzed in detail as well.

II. BACKGROUND

A. The Ising model

The full potential energy of the Ising fluid can be written
in its most general form as

U =
1

2o
iÞ j

N

fwsr ijd − Isr ijd − Jsr ijdsisjg − Ho
i=1

N

si , s1d

wherer i is the (three-dimensional) spatial coordinate of the
ith particle carrying spinsi = ±1 with i =1, . . . ,N andN being

the total number of particles,r ij = ur i −r ju denotes the interspin
separation, andH relates to the homogeneous external mag-
netic field. The exchange integralsJ.0d of ferromagnetic
interactions and the attraction partsI .0d of nonmagnetic
ones can be chosen in the form of Yukawa functions,

Jsrd =
2sz1sd2

z1s + 1

«Js

r
expf− z1sr − sdg,

Isrd =
2sz2sd2

z2s + 1

«Is

r
expf− z2sr − sdg, s2d

wherez1 andz2 are the inverse screening lengths of the po-
tentials, eJ and eI denote the interaction intensities, ands
relates to the particle size. The repulsionw between particles
can be modeled by a(more realistic) LJ-like SC potential[7],

wsrd = 54eFSs

r
D12

− Ss

r
D6G + e, r , Î62s

0, r ù Î62s,

s3d

rather than by the hard-sphere(HS) function

wHSsrd = H`, r , s

0, r ù s.
s4d

The multipliers 2sz1,2sd2/ sz1,2s+1d, entering in Eq.(2),
have been used for the sake of convenience of comparison of
our results with previous predictions(see Sec. III). Then, for
instance, the integralses

` Isrddr =8peIs
3 and es

` Jsrddr
=8peJs

3 are independ ofz1 andz2, respectively. Within the
standard hard-sphere MF theory(HSMF), such integrals de-
scribe the contribution of the interactions to the free energy
[3]. Thus, we can say in advance that the HSMF results will
not depend onz1,2. At z1,2s=1 (the case which is usually
considered in theory and simulation), the multipliers go to
unity, and we come to the usual form forIsrd and Jsrd.
Within the soft-core MF theory(SCMF), introduced recently
in Ref. [7], a slightz1,2 dependency should appear. Then the
integrals transform to e0

` exps−bwSCdhI ,Jjsrddr
=8gsT,z1,2dpeI,Js

3, whereb−1=kBT denotes the temperature
with kB being Boltzmann’s constant, andgsT,z1,2d is the
function which takes into account the softness of the repul-
sion potentials(see Eqs.(8)–(10) of Ref. [7]). For the inte-
gral equation approach we expect a more pronounced depen-
dence of the results onz1,2.

B. Integral equation approach

1. Mapping to a symmetric binary mixture

Since the spinssi in an Ising fluid take only two values,
±1, we can map the system withN particles carrying spin 1
or −1 onto a binary mixture withNa andNb particles of type
a andb, respectively, whereNa+Nb=N. Then Eq.(1) trans-
forms to the equivalent form
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U =
1

2o
iÞ j

Na

faasr ijd +
1

2o
iÞ j

Nb

fbbsr ijd + o
i,j=1

Na,Nb

fabsr ijd − HM ,

s5d

whereM =oi=1
N si =Na−Nb relates to the total magnetization

of the system and

faasrd = fbbsrd = wsrd − fIsrd + Jsrdg,

fabsrd = fbasrd = wsrd − fIsrd − Jsrdg s6d

describe the interactions between like and unlike particles in
the mixture.

In a further step, we have to rewrite the energy, the mag-
netic field, and the magnetization per particlem=M /N in
terms of appropriate variables suitable for the mixture. Apart
from the total number densityr=N/V, whereV denotes the
volume, such variables include the particle concentrationx
and the chemical potentials. One has the concentration rela-
tions

x =
Na

N
, 1 −x =

Nb

N
, m= 2x − 1. s7d

In addition, we emphasize that due to a finite value of the
external field term on the right-hand side of Eq.(5), we have
to deal with a mixture prepared in an unusual way. Indeed,
when transferring one particle from speciesa to species
b—in the Ising liquid this amounts to flipping a spin from up
to down and thusDM =−2—without changing the spatial
coordinates, the total change in energy is equal toDU=2H
(the other terms do not contribute toDU due to the symmetry
faa=fbb of the particle interactions). On the other hand, the
change in energy of the mixture is given by

DU = DNama + DNbmb = mbsr,x,Td − masr,x,Td, s8d

wherema andmb are the chemical potentials of speciesa and
b, respectively. This leads to the identification

Dm ; mbsr,x,Td − masr,x,Td = 2H. s9d

Condition (9) can be considered as an additional constraint
imposed on the concentration at given values ofr, T, andH,
namely,x=xsr ,T,Hd. The reason for this procedure is the
following. In the case of a magnetic fluid, the external field
(not the magnetization) is accessible to experiment, whereas
for a mixture it is the concentration(not the chemical poten-
tials). In order to study the Ising fluid in the notation of a
binary mixture one, therefore, has to fix the difference of the
chemical potentials.

2. Formulation of the integral equations

For mixtures, the OZ integral equations have[32] the
form

habsrd = cabsrd + o
g=a,b

rgE cagsur − r 8udhgbsr8ddr 8,

s10d

where the total and direct correlation functionshab andcab

for a pair of particles of speciesa andb will depend only on
their separation distance,rg=Ng /V is the particle number
density of thegth species, and the indicesa, b, andg take
two values,a (spin up) andb (spin down).

Equation (10) must be complemented by an(approxi-
mate) closure relation to be solved with respect tohab and
cab. The standard MSA scheme[32], proposed originally
[40] for systems with HS repulsion(4), should be replaced in
our case by the soft MSA ansatz(SMSA) [41,42], appropri-
ate for a SC potential(3). It reads

gabsrd = expf− bfabsrd + habsrd − cabsrd + Babsrdg,

s11d

wheregabsrd=habsrd+1 denotes the radial distribution func-
tion, and

Babsrd = lnf1 + sabsrdg − sabsrd s12d

is the bridge function with

sabsrd = habsrd − cabsrd − bfab
l srd s13d

(no confusion may arise between the index and the Boltz-
mann factorb). Formally settingB=0 in Eq.(11) leads to the
hypernetted-chain(HNC) approximation[32].

The SMSA additionally requires the separation of the total
potentialfab in its short- and long-ranged partsfab

s andfab
l

with fab=fab
s +fab

l . There is no general procedure to per-
form such a separation uniquely for arbitrary potentials.
Since the SMSA itself is not exact, the Yukawa potentials in
the region of core repulsionr &s allow splitting to some
extent in various ways, leading to various versions of the
SMSA. Usually the splitting is carried out by introducing a
switch function. One choice among others is to extract the
long-ranged part using the Boltzmann-like switching expo-
nent built on the soft-core potential, i.e.,

fab
l srd = − fIsrd ± Jsrdgexpf− bwsrdg. s14d

Such an extraction is quite natural, because forr .s the
function fab

l srd rapidly tends with increasingr to the
Yukawa potential −fIsrd±Jsrdg (we note that expf−bwsrdg
=1 for r ùÎ62s, whereas limr→0 expf−bwsrdg=0). By the re-
placementwsrd→wHSsrd, we come to the standard HS MSA
with habsrd=0 for r ,s andcabsrd=bfIsrd±Jsrdg for r ùs.

Another trick lies in a modification of the bridge function
to the form of Eq.(12) if sabsrd.0 and toBabsrd=0 when
sabsrdø0, which combines the SMSA with the HNC ap-
proximation. This is in the spirit of the KH closure proposed
by Kovalenko and Hirata[43,44]. Note that the pure SMSA
sometimes leads to unphysicalr domains with negative val-
ues ofgsrd. The modified SMSA preserves by construction
the positiveness ofgsrd everywhere in density and tempera-
ture space.
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3. Calculation of thermodynamic quantities

Equations(10) and(11) constitute a system of six nonlin-
ear integroalgebraic equations for the same number of un-
knownshh,cjaa, hh,cjbb, and hh,cjab=hh,cjba. Once the so-
lutions are found, the thermodynamic quantities are
calculated in a straightforward way. In particular, the pres-
sure can be calculated from the virial equation of state

Psr,x,Td = rkBT −
2p

3 o
a,b

a,b

rarbE
0

` dfab

dr
gabsrdr3dr,

s15d

where r=ra+rb. Although the energy and compressibility
routes can also be used, we will prefer the virial route(15)
because it is most easily implemented.

The chemical potentials can be written in the form

ma = ma
* + kBTsln ra + 3 ln Lad, s16d

wherea=a,b, and La being the de Broglie thermal wave-
length (which is independent ofr and x). Explicit expres-
sions for the excess part ofma can be derived using the
(exact) Kirkwood formula [45]

ma
* = o

b=a,b
rbE

0

1

dlE
0

`

gabsr,ld
] fabsr,ld

] l
4pr2dr.

s17d

Here, the integration overl corresponds to the computation
of the work of transferring a separate particle from a vacuum
[l=0 with fabsr ,ld=0] to the system[l=1 andwabsr ,ld
=wabsrd]. Performing thel integration in a manner similar to
that proposed in Refs.[43,44], one obtains, taking into ac-
count Eqs.(10) and (11) that

ma
* = kBT o

b=a,b
rbE

0

` F1

2
hab

2 srd −
1

2
habsrdcabsrd − cabsrd

+ Babsrdgabsrd −
habsrd
sabsrd E0

sabsrd

Bss8dds8G4pr2dr,

s18d

with e0
s Bss8dds8 being equal tos1+sdlns1+sd−sss+2d /2 at

s.0 or 0 for sø0.
It is worth mentioning that since the correlation functions

are calculated approximately, the above expressions(15) and
(18) for the pressure and chemical potentials will not be ther-
modynamically self-consistent. In particular, the virial, en-
ergy and compressibility routes will lead to different results.
Although the differences are, as a rule, relatively small, they
may distort the phase coexistence properties near a critical
point. A derivation of the self-consistent expressions in the
case of the nonideal Ising model in the presence of the ex-
ternal field is a nontrivial problem that needs a separate se-
rious investigation. It could be solved, for instance, within
the SCOZA by extending its present implementation from
hard-sphere to soft-core repulsion potentials. In this paper for

the sake of simplicity we will use the virial pressure comple-
mented by an appropriately chosen Maxwell construction
(see Sec. II C).

C. Phase separations

For a general binary mixture, the densitiesrI,II and con-
centrationsxI,II of coexisting phases I and II are determined
at a given temperatureT from the well-known mechanical
and chemical equilibrium conditions

PsrI,xI,Td = PsrII ,xII ,Td,

masrI,xI,Td = masrII ,xII ,Td ; ma
I,II , s19d

mbsrI,xI,Td = mbsrII ,xII ,Td ; mb
I,II .

In our case, they should be complemented by the condition

mb
I,II − ma

I,II = 2H s20d

following from the external field constraint[Eq. (9)] for each
phase. It is convenient to replacema andmb by the sum

m ;
ma + mb

2
, s21d

and the differenceDm defined in Eq.(9). Then two of the
three chemical-potential conditions in Eqs.(19) and(20) can
be rewritten in the equivalent form

DmsrI,xI,Td = DmsrII ,xII ,Td = 2H. s22d

These conditions will be satisfied automatically, provided
the integroalgebraic equations(10) and (11) are solved in
conjunction with Eq.(9). Then one finds a consistent set of
correlation functions together with the solution

x = xsr,T,Hd s23d

for the concentration in the mixture. For the Ising fluid, the
magnetizationmsr ,T,Hd can easily be reproduced fromx,
whenever it is necessary, using relation(7). Solution(23) can
now be inserted into the remaining conditions yielding

PsrI,T,Hd = PsrII ,T,Hd,

msrI,T,Hd = msrII ,T,Hd, s24d

where the mapping fromsr ,x,Td space to the new set
fr ,xsr ,T,Hd ,Tg;sr ,T,Hd has been performed.

Relations(24) look now like the coexistence conditions
for a one-component fluid. Indeed, the Gibbs free energy of
the mixtureG=maNa+mbNb can be rewritten in terms ofN
=Na+Nb and M =Na−Nb as G=Nsma+mbd /2−Msma

−mbd /2;mN−HM, so that the introduced quantitym [Eq.
(21)] has the meaning of the chemical potential of the Ising
fluid. It can be calculated using expressions(16) and (18)
[which were already used when solving the external field
constraint(see Eqs.(9) and (23)]. Alternatively, a Maxwell-
construction scheme has been utilized. In order to demon-
strate that this scheme can be applied in its standard form to
the magnetic fluid, let us consider the change in the Gibbs
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free energy. According to the thermodynamic relations, we
have dG=−SdT+VdP+madNa+mbdNb;−SdT+VdP+mdN
−HdM, whereS denotes the entropy. During the isothermal
(dT=0) process I→ II we obtain, integrating by parts, that
for the system with a fixed number of particlessdN=0d in
the presence of a constant external fieldH, the free energy
increment is equal toDG=PVuI

II −eI
II PdV−HsMII −MId. On

the other hand, from the definition ofG it follows that DG
=NmuI

II −HsMII −MId. Since the increment caused by the
changeHsMII −MId in the magnetic energy is the same for
both routes, we come to the Maxwell constructionQI,II

=s1/rII −1/rIdP+erI
rII

Psr ,T,Hddr /r2=0, whereP denotes
the coexistence pressure. The construction guarantees that
the chemical potential will be the samesmuI

II =0d in both
phases I and II, so that the second line of Eq.(24) transforms
to QsrI ,rII ,T,Hd=0.

In such a way, the gas-liquid and liquid-liquid phase tran-
sitions of the first order can be determined. The second-order
para-ferromagnetic transition atH=0 can be found as a
boundary (Curie) curve Tlsrd. Below this curve, i.e., for
T,Tlsrd, Eq. (9), being solved atH=0 with respect to the
concentrationx [see Eq.(23)], should have a nontrivial so-
lution x=xsr ,T,0dÞ1/2 (i.e., mÞ0). For T.Tlsrd, only
the trivial one should satisfy Eq.(9) at H=0. Note that the
trivial solution x=1/2 (or m=0) appears as a result of the
symmetry of the interparticle potentials[Eq. (6)]. For the
same reason, the coexisting phases will have an identical
density at concentrationsx and 1−x, or at magnetizationsm
and −m. From the structure of Eqs.(9), (15), and(18), it also
follows that, ifx (or m) is a solution to Eq.(9) at some value
of H, then 1−x (or −m) will automatically satisfy this equa-
tion at the field −H. Therefore, the phase diagrams will be
symmetric with respect to the magnetic fieldH.

III. NUMERICAL CALCULATIONS

A. Computational algorithm

The set of OZ integral equations(10) was first reduced to
a system of linear algebraic ones,habskd=cabskd
+og=a,b rgcagskdhgbskd, by applying the three-dimensional
Fourier transform Askd=eV Asrdexpsik ·r ddr
=e0

` 4pr2Asrdsinskrd / skrddr, whereA is any function ofr. It
can be presented in the compact(232) matrix form hskd
=cskd+cskdrhskd with r being the diagonal density matrix
having nonzero elementsfrg11=ra;xr and frg22=rb;s1
−xdr.

Because of the nonlinearities in the SMSA closure[Eqs.
(11)–(14)] and the external field constraint(FC) [see Eqs.(9)
and (18)], the coupled set of OZ/SMSA/FC equations have
to be solved iteratively. The iterations have been carried out
by adapting the method of modified direct inversion in the
iterative subspace(MDIIS) [46]. At given values ofr, T, and
H the iteration starts from initial guesses forcabsrd and x,
and the Fourier transformed functionscabskd are calculated.
Then the total correlation functions ink space are obtained
analytically,hskd=fI −cskdrg−1cskd, whereI denotes the unit
matrix. Applying the backward Fourier transform tohskd

yields hsrd=1/s2pd3e0
` 4pk2hskdsinskrd / skrddk. With the

current values ofcsrd, hsrd, andx, the residuals to the SMSA
closure (11) and field constraint(9) are evaluated. Using
them, new values ofcsrd andx are updated according to the
MDIIS corrections, and the iteration procedure is repeated
until the solutions lead to residuals with a relative root mean
square magnitude of 10−6. The coexistence phase densities
were then found by applying the Maxwell construction.

The ratio R of the integrated strengths of magnetic to
nonmagnetic interactions can be calculated as

R=

E
0

`

4pgsrdJsrdr2dr

E
0

`

4pgsrdIsrdr2dr

, s25d

where gsrd=x2gaasrd+2xs1−xdgabsrd+s1−xd2gbbsrd is the
(total) radial distribution function of the Ising fluid. From the
form of the Yukawa potentialsIsrd andJsrd [Eq. (2)] it fol-
lows that the relation(25) transforms to

R=
eJ

eI
s26d

for z1=z2, We have preferred the latter definition even when
z1Þz2, because the former is sensitive to the approximation
made forgsrd.

The strengthe appearing in the SC potential[Eq. (3)] was
set toeJ. This corresponds to a moderate softness ofw with
respect to the total potential[see Eq.(1)]. In the presentation
of our results we use the dimensionless densityr* =rs3, tem-
peratureT* =kBT/eJ, external fieldH* =H /eJ, and inverse
screening lengthsz1,2

* =z1,2s.

B. Results for the ideal system„R=`…

Examples of the phase diagrams obtained within the OZ/
SMSA/FC integral equation approach for the soft-core ideal
Ising fluid with z1

* =1 at various values,H* =0, 0.1, 0.5, 1, 5,
and`, of the external field are shown in sets(a)–(f) of Fig. 1
in the sT* ,r*d plane. For the purpose of comparison, the
results of the SCMF theory and available MC simulation
data[7] are also included in this figure.

As can be seen clearly, the OZ/SMSA/FC approach leads
to much more accurate predictions of the liquid-gas coexist-
ence densities with respect to the usual version of the SCMF
theory. Even the adjustable version, when a semiphenomeno-
logical parameter is introduced within the SCMF and fitted
to MC data atH→` (see Ref.[7]), provides us with worse
results. At the same time, the deviations between the OZ/
SMSA/FC predictions and MC data are relatively small, es-
pecially for regions which are well below the critical point.
On the other hand, the precision decreases when approaching
the critical point, where the uncertainties in critical tempera-
ture and density estimations can reach about 10−15 %.
Moreover, the computations have shown that the OZ/
SMSA/FC approach reproduces, such as the MF theory, the
classical values of critical exponents. For instance, the den-
sity difference in liquid and gas phases,rL

* −rG
* , appears to be
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proportional near a critical point tosTc
* −T*db independently

of H* with the critical exponentb=1/2 (instead of the values
b<1/3 and 7/20 obtained within the RGT and SCOZA,
respectively).

The influence of varying the screening lengthz1 of mag-
netic interactions on the OZ/SMSA/FC phase diagram is il-
lustrated in Fig. 2. In this respect, it should be emphasized
that within the SCMF scheme, the results will depend onz1
very weakly(see comments at the end of Sec. II A). Using
the more precise integral equation approach, we can observe
an obviousz dependence of the binodal for all values of the
external field. In particular, the dimensionless critical tem-
peratureTc

* and densityrc
* increase considerably with rising

z1 at each fixed value ofH. However, the topology of the
phase diagram remains the same and is not affected by vary-
ing the screening length. Namely, as in the case of the SCMF
theory [7], the OZ/SMSA/FC approach predicts a tricritical
point for the ideal Ising fluid atH* =0 and not a critical end
point besides a gas-liquid critical point. This holds forz1

*

ø5 and at least to within the relative accuracy 10−6 of the
numerical calculations.

The change inz1
* (this quantity will be denoted below

simply asz*) does also not affect the tendency of the critical
temperature(density) to decrease(increase) monotonically
with increasing the external field strengthH* . The dependen-
ciesTc

*sH*d andrc
*sH*d are plotted in detail in subsets(a) and

(b) of Fig. 3, respectively. The OZ/SMSA/FC calculations
show that in the limit of weak fields, the functionsTc

*sH*d
and rc

*sH*d can be cast in the formsTc
*sH*d=Tc

*s0d
−cTsz*dsH*d2/5 and rc

*sH*d=rc
*s0d+crsz*dsH*d2/5, with cTsz*d

andcrsz*d being quantities depending only onz* . The expo-

FIG. 1. The liquid-gas coexistence densitiesr* as a function of
temperatureT* obtained within the OZ/SMSA/FC integral equation
approach(bold curves) for the soft-core idealsR=`d Ising fluid
with z1

* =1 and different values of the external field,H* =0, 0.1, 0.5,
1, 5, and` [subsets(a)–(f), respectively]. The results of the usual
and the adjustable versions[7] of the SCMF theory are plotted
correspondingly by thin and dashed curves. The Gibbs ensemble
MC simulation data[7] are shown as circles. The para-ferro mag-
netic phase transition[at H* =0, subset(a)] is shown by the long
dashed curve.

FIG. 2. The liquid-gas coexistence densitiesr* as a function of
temperatureT* obtained within the OZ/SMSA/FC integral equation
approach for the soft-core ideal Ising fluid at different values,z1

*

=0.5, 1, 2, and 3, of the inverse screening length[subsets(a)–(d),
respectively] as well as different values of the external field,
namely, top to bottom and alternating solid and dashed curves,H*

=0, 0.01, 0.1, 0.3, 0.5, 1, 2, and 5(within each subset). At z1
* =3, an

additional curve corresponding toH* =9 is included in subset(d).
Note that the curves corresponding toH* =` are not shown, be-
cause they practically coincide with those related toH* =5 at z1

*

=0.5, 1, and 2[subsets(a), (b), and(c)] or to H* =9 atz1
* =3 [subsets

(d)]. The para-ferro magnetic phase transition(at H* =0) is plotted
in the subsets by the long dashed line.

FIG. 3. The critical temperatureTc
* [subset(a)] and critical den-

sity rc
* [subset(b)] as functions of the external fieldH* , evaluated

within the OZ/SMSA/FC approach for the ideal Ising fluid at vari-
ous values of the inverse screening lengthz* . At z* →0, the result
corresponds to the SCMF theory.
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nent of this power law behavior is in accordance with the
mean field tricritical exponent[4,7] (where, of course,cT and
cr are independent ofz*). With increasingH* , the functions
Tc

*sH*d andrc
*sH*d begin to tend rapidly(especially at small

and moderate values ofz) to their infinite field limits. For
largerz* , the saturation regime shifts to higher values ofH* .
At small inverse screening lengthsz* ,0.5d, the OZ/
SMSA/FC and SCMF results are practically indistinguish-
able.

It is worth mentioning that in the Kac limitz* →0, the
SCMF theory should lead to exact results provided the equa-
tion of state of the reference system is chosen exact too.
Indeed, atz* →0 the magnitude 2szsd2/ szs+1d of the mag-
netic potential vanishes, whereas the screening length 1/z
tends to infinity. Under such conditions, the magnetic inter-
actions can be treated as an infinitesimally small perturbation
to the reference potential and the assumptions of the MF
theory become exact. With increasingz* , the precision of the
SCMF description goes down. Note that within the standard
HSMF and SCMF theories, the reference system relates ex-
clusively to nonmagnetic HS or SC repulsion. This is accept-
able for long-rangedsz* &1d potentials. When the screening
radius is short enoughsz* *2d, a more appropriate choice of
the reference system(including a part of the Yukawa poten-
tial) should be made. On the other hand, the accuracy of the
OZ/SMSA/FC approach when evaluatingTc

* and rc
* is ex-

pected to be of order of 10–15 %, in a wide region of
z* -values. This is the same accuracy as for the casez* =1,
where the direct comparison with the MC data could be per-
formed (see Fig. 1).

The OZ/SMSA/FC results for the magnetic phase transi-
tion (which takes place only atH* =0) are shown in Fig. 4(a)
for the setz* =0.5, 1, 2, 3, and 5 of the inverse screening
length over a wide temperature and density region. It can be
seen that the dependence of the Curie temperatureTl

* on r*

shifts considerably to smaller values ofr* with increasingz* .
This dependence is nonlinear contrary to the HSMF predic-
tion, where the functionTl

* =8pr* depends linearly onr and
is independent ofz. Within the more accurate SCMF and

OZ/SMSA/FC approaches, the linear dependence ofTl
* on r*

is recovered only in the particular(Kac) limit z* →0. At
larger values ofz* (namely, atz* .2), the deviations from the
limiting behavior become significant. A similar, but consid-
erably weakerz* dependence ofTl

* to that presented in Fig.
4(a) for the OZ/SMSA/FC approach is observed within the
SCMF theory, due to the existence of the factorgsT* ,z*d in
the temperatureTl

* =8pgr* (see Ref.[7]). Note also that the
difference between the SCMF and OZ/SMSA/FC functions
Tl

* sr*d increases with risingz* . However, even for small val-
ues ofz* , where thez* dependence is not so pronounced, the
SCMF theory leads to worse predictions. This is demon-
strated in Fig. 4(b) for a particular casez* =1 by comparison
with MC results. Although it seems that both theories agree
quite well, a closer look shows that the SCMF deviations
from the MC data are slightly larger than those of the OZ/
SMSA/FC theory.

C. Results for nonideal models„0,R,`…

1. Zero magnetic field

The phase coexistences of the nonideal Ising fluid with
z1

* =z2
* =1 are shown in Fig. 5 forH* =0, when the ratioR of

FIG. 6. The coexistence densitiesr* as a function of tempera-
ture T* obtained within the OZ/SMSA/FC approach for the soft-
core nonideal Ising fluid withz1

* =z2
* =1 atH=0 for moderate[sub-

set (a)] and small[subset(b)] values ofR.

FIG. 4. (a) The para-ferro magnetic transition temperatureTl
*

obtained atH* =0 within the OZ/SMSA/FC integral equation ap-
proach for the soft-core ideal Ising fluid for different values of
inverse screening length, from right to left,z* =0.5, 1, 2, 3, and 5.
The result of the standard HSMF theory is plotted as the dashed
straight line and relates to the casez* →0. (b) The results of the
SCMF and OZ/SMSA/FC theories for the casez* =1 are shown as
dashed and solid curves, respectively, in comparison with canonical
MC simulation data(circles) taken from Ref.[7].

FIG. 5. The gas-liquid coexistence densitiesr* as a function of
temperatureT* obtained within the OZ/SMSA/FC approach for the
soft-core nonideal Ising fluid withz1

* =z2
* =1 at H* =0 for large val-

ues ofR.
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strengths of the magnetic to nonmagnetic interaction is not
too small. As can be seen, all the curves exhibit a tricritical
point behavior—type I of the thermodynamic phase
diagrams—of the same topology as the caseR=`. Note that
because of the great number of curves, the magnetic phase
transition lines have been omitted in Fig. 5 as well as in Figs.
6–9. They are presented in detail in Fig. 14 below.

With further decreasingR, the shape of the phase dia-
grams changes in a characteristic way. This is illustrated in
subsets(a) and (b) of Fig. 6. Beginning from the upper
boundary valueR=Ru=0.215, beside the tricritical point
(TCP) a gas-liquid critical point(GLCP) appears in the para-
magnetic phase region(at smaller densities than the tricriti-
cal point density) indicating that the nonmagnetic interaction
is strong enough to condense here the system into a liquid
phase. In addition, a triple point becomes visible. The TCP
now corresponds to a liquid-liquid transition between para-
magnetic and ferromagnetic phases. This is different from
the phase behavior of type I in the regionRu,Rø`, where
the TCP relates to the transition between a paramagnetic gas

and a ferromagnetic liquid phase. Such a new topology of the
phase behavior belowRu will be referred to as type II. The
appearance of the additional critical point with decreasingR
is explained by an increased weight of nonmagnetic attrac-
tions in the system. The nonmagnetic interaction is suffi-
ciently strong to produce a gas-liquid transition before the
liquid becomes ferromagnetic.

If the nonmagnetic interaction becomes too strong,
namely, if the value ofR is below the lower boundary level
Rl, i.e.,R,Rl =0.14, the TCP disappears and transforms into

FIG. 7. The coexistence densitiesr* as a function of tempera-
tureT* obtained within the OZ/SMSA/FC approach for the nonideal
Ising fluid atR=0.215[subset(a)] andR=0.14 [subset(b)] corre-
sponding to different values,z1

* =z2
* =0.5, 1, 2, and 3, of the inverse

screening radii.

FIG. 8. The same as in Fig. 7 but forz1
* Þz2

* at R=0.215[subsets
(a) and (b)] andR=0.14 [subsets(c) and (d)].

FIG. 9. The complete thermodynamic phase diagrams of the
nonideal Ising fluid with z1

* =z2
* =1 evaluated using the OZ/

SMSA/FC approach and projected onto thesT* ,r*d plane at some
typical values ofR=5, 1, 0.29, 0.215, 0.2, 0.19, 0.16, and 0.12
[subsets(a)–(h), respectively]. The families of the diagrams in each
of the subsets correspond to different values of the external field,
H* =0, 0.01, 0.1, 0.5, 1, 2, 3, 5, 9, and̀(the valueH* =0.3 for R
=5 and 1, as well asH* =20 for R=0.12 are included additionally,
whereasH* =9 is excluded forR=5 and 1).
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a critical end point(CEP) [see subset(b) of Fig. 6]. At the
same time, the GLCP remains and further shifts away from
the CEP. Such a topology of the phase diagram in the region
R,Rl will be defined as of type III. Note that for extremely
small values ofR (whenR!Rl), the phase coexistence will
behave like that inherent in a simple nonmagnetic fluid(be-
cause thenI @J and magnetic interactions can be ignored
completely).

These three phase diagram topologies atH=0 have been
found earlier for other systems, such as symmetric binary
nonmagnetic mixtures[24,25,28,29], the Heisenberg fluid
[4,17], or the Stockmayer fluid[47]. It is interesting to re-
mark that the boundary valuesRu=0.215 andRl =0.14 calcu-
lated by us within the OZ/SMSA/FC approach for the Ising
fluid correspond todu=0.646 anddl =0.754. Hered=s1
−Rd / s1+Rd denotes the ratio of interparticle potentials(out-
side the hard or soft core) between unlike and like(see Eq.
(6), d is proportional to the ratiofIsrd−Jsrdg / fIsrd+Jsrdg)
particles in the mixture. The latter values are very close to
those(du=0.65 anddl =0.75) reported in Ref.[29] for a sym-
metric binary mixture and evaluated within the SCOZA tech-
nique (the HRT yieldsdu=0.665 [30]). However, the direct
comparison is not possible since we used the soft-core po-
tential instead of the hard-sphere repulsion and another value
of the inverse screening lengthz;z1=z2.

Varying the parameterz* can lead to a qualitative modifi-
cation of the phase diagrams and thus to a shift of the bound-
aries between different topologies. This is seen in Fig. 7,
where the casesz1

* =z2
* =0.5, 1, 2, and 3 are considered atR

=0.215 [subset(a)] and R=0.14 [subset(b)]. From the to-
pologies of these diagrams it can be concluded that the upper
Rusz*d and lowerRlsz*d boundary values decrease with in-
creasing z* ;z1

* =z2
* . A more complicated situation arises

whenz1
* Þz2

* that is presented in Fig. 8. Here, the quantities
Ru and Rl should be treated as depending on both inverse
screening lengthsz1

* and z2
* . Analyzing the set of curves in

Fig. 8, it can be stated that the behavior ofRusz1
* ,z2

*d and
Rlsz1

* ,z2
*d is not monotonic. In particular, the functions

Rusz1
* ,z2

*d andRlsz1
* ,z2

*d increase with risingz2
* at fixedz1

* =1,
but they decrease with increasingz1

* at constantz2
* =1.

It is worth mentioning that the above three types of the
phase diagrams can also be observed within MF theory[4].
The disadvantage of the MF description is that it produces
boundary valuesRu andRl which are independent ofz1

* and
z2

* . This corresponds, in fact, to the limiting behavior ofRu
andRl at z1

* ,z2
* →0.

2. Nonzero magnetic field

A set of phase diagrams for different values of the exter-
nal field H and relative strengthR of internal magnetic to
nonmagnetic interactions are plotted in Fig. 9. Here, we can
see that the change inH modifies considerably the phase
coexistence curves in the nonideal Ising system. At large
values ofR, such modifications are similar to those of the
ideal Ising fluid[compare, for example, the subset(a) of Fig.
9, R=5, with the subset(b) of Fig. 2,R=`]. Since there is no
magnetic phase transition at finite fields, the tricritical point
at H* =0 transforms into a critical point forH* Þ0 (note that

one has a phase diagram symmetric inH→−H) and moves
monotonically in the temperature-density plane with increas-
ing H to the side of lowerT* and higherr* . This demon-
strates that the critical lines meet in a tricritical point. At
intermediate and small values ofR, the phase diagram modi-
fications exhibit nonmonotonic features. For instance, atR
=0.29[see subset(c)], the critical temperature, starting from
the valueTcs0d at H=0, begins first to go down, reaching a
minimum at H* ,2. Further it increases up to its limiting
valueTc`=limH→`TcsHd, whereTc` can be less[subset(c)]
or greater[subset(d)] thanTcs0d.

More complicated scenarios are observed for parameters
Rl =0.14,R,0.215=Ru (the region of topologies of type
II ), when the gas-liquid critical point exists simultaneously to
the tricritical one. However, only one of these two critical
points atH=0 can be connected by a critical line with the
critical point at H=`. With increasingH, one of the two
critical lines has to end. This is only possible in a critical end
point. How this happens depends on the concrete value ofR
[see subsets(e)–(g) of Fig. 9]. In the infinite field limit H
→`, the phase diagrams tend at eachR to the gas-liquid
binodals of simple nonmagnetic fluids with the interparticle
potentialfsrd=wsrd− Isrd−Jsrd. This is because then all the
spins align exactly along the field vector, so that the product
si ·sj will be equal to 1[see Eq.(1)] for any pair of particles.
A similar behavior even for finite fields can be observed for
regions with too low values ofR,Rl =0.14[see subset(h)],
where the influence of magnetic interactions can be ne-
glectedsJ! Id.

The dependencies of the gas-liquid critical temperature
Tc

* sgld, the liquid-liquid critical(wing) temperatureTc
* swd, and

the corresponding densitiesrc
* sgld and rc

* swd of the nonideal
Ising fluid on the valueH* of the external field are shown in
detail in Figs. 10 and 11, respectively. They cover the whole
region of varyingR and include all the three types, I[subset

FIG. 10. The critical temperature of the wing linesTc
* swd, subsets

(a) and (b), and the gas-liquid critical linesTc
* sgld, subsets(c) and

(d), as a function of the external magnetic fieldH* for the nonideal
Ising fluid at different values of parameterR.
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(a)], II [subsets(b) and(c)], and III [subset(d)] of the phase
diagram topology. Note that both phase transitions exist only
in region II of the global phase diagram, whereas the wing
line disappears forR,Rl and the gas-liquid phase transition
line does not appear forR.Ru. For type I [subset(a)], the
wing line will correspond to the gas-liquid critical point(no
liquid-liquid phase transitions are present inR regions corre-
sponding to types I and III). As can be seen, the monotonic
decrease ofTc

* swd with rising H* , observed at 0.5øRø`,
gradually transforms into a nonmonotonic function
Tc

* swdsH*d, when the parameterR lies in the intervalfRvl ,0.4g
with Rvl =0.196 [subset(a) of Fig. 10]. The position of the
minimum in Tc

* swdsH*d shifts fromH* ,3 to 1 with decreas-
ing R. At RùRvl, the wing line can exist for arbitrary fields
0øH* ø`. For R,Rvl, the wing line terminates at some
finite valueHce

* sRd [subset(c) of Fig. 10] until it disappears
at R,Rl =0.14.

The wing line densityrc
* swdsH*d also exhibits a nonmono-

tonic field behavior in the interval 0.6øR,1.25 with a
maximum atH* ,1 to 2. Outside of this interval, it increases
sRù1.25d or decreasessR,0.6d monotonically[see subsets
(a) and (b) of Fig. 11]. On the other hand, for 0.196
=Rvl ,R,Ru=0.215 the gas-liquid critical point ends in a
critical end point at some finite valueHglce

* sRd [subset(c) of
Figs. 10 and 11]. For RøRvl, the gas-liquid transition line
exists for arbitrary fields 0øH* ø`. The critical temperature
Tc

* sgldsH*d of this transition increases always monotonically
with increasingH* [subsets(c) and (d) of Fig. 10], whereas
the critical densityrc

* sgldsH*d is always a nonmonotonic func-
tion exhibiting a maximum atH* ,3 to H* ,30 depending
on R [see subsets(c) and (d) of Fig. 11].

3. Van Laar point in the global phase diagram

From the phase diagram analysis presented it follows that
in the region of topologies of type IIsRl ,R,Rud, the gas-

liquid and liquid-liquid transitions can coexist simulta-
neously not only atH=0 but also forHÞ0. On the other
hand, it has been realized that for sufficiently strong fields
including the limitH→`, we have a simple nonmagneticlike
phase behavior with the presence of only one gas-liquid tran-
sition (see Fig. 9). Thus, region II in the global phase dia-
gram has to split into two subregions depending on whether
the gas-liquid(type IIa, Rvl ,R,Ru) or the liquid-liquid
(type IIb, Rl ,R,Rvl) critical line terminates in a critical
end point at some finite value ofH* . The boundary in the
global phase diagram between these two regions defines a
van Laar-like point[48].

Our calculations have shown that this special point is
identified atRvl =0.196 withHtr

* <2.2 for rtr
* <0.55 andTtr

*

<21.3. As can be seen in Fig. 12, there exists a finite critical
valueHtr, where both the gas-liquid and liquid-liquid critical
lines merge in one point in the temperature-density plane
projection. It is an asymmetric tricritical point and the
change of the critical exponentb from the mean field value
sb=1/2d to its tricritical valuesb=1/4d is seen in Fig. 12
[subset(b)]. The van Laar point has been found in symmetric
mixtures[49] but so far not in Ising liquids. In van der Waals
theory the value of the van Laar point isRvl

MF=0.279 in
agreement with the valued=0.564 given in Ref.[49] (note
that L=1−d=0.436 there). The valueRvl =0.196 is compa-
rable to that found(at z* =1.8) in Ref. [30] (their dvl =0.67

FIG. 11. The critical density of the wing linesrc
* swd, subsets(a)

and(b), and the gas-liquid critical linesrc
* sgld, subsets(c) and(d), as

a function of the external magnetic fieldH* for the nonideal Ising
fluid at different values ofR.

FIG. 12. The thermodynamic phase diagrams obtained within
the OZ/SMSA/FC approach for the soft-core nonideal Ising fluid
with z1

* =z2
* =1 atR=Rvl =0.196. The phase coexistence curves pro-

jected onto thesT* ,r*d plane are shown in subset(a) for different
external field values,H* =0, 0.01, 0.1, 0.5, 1, 2, 3, 5, 9, and̀. A
more detailed phase behavior near the asymmetric tricritical point is
presented in subset(b) for (bottom to top) H* =1, 1.2, 1.4, 1.6, 1.8,
2, 2.2, and 2.6. Here, the gas liquid(on the left) and wing line(on
the right) critical points(circles) are connected by thin curves. The
critical temperatureTc

* sgl,wd and critical densityrc
* sgl,wd of the gas-

liquid and liquid-liquid phase transitions are plotted as functions of
H* in subset(c) and (d), respectively. They meet in the van Laar
point (dots).
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corresponds toRvl =0.197). In order to collect our results for
the thermodynamic phase diagrams, the global phase dia-
gram inR space is presented in Fig. 13.

4. Magnetic critical line

Let us consider, finally, the OZ/SMSA/FC result on the
para-ferro coexistence in the nonideal Ising fluid atH=0. It
is shown in Fig. 14 for various values ofR in a wide region
of the temperature-density plane. In the case of the ideal fluid
sR=`d, a strong dependence of the Curie temperatureTl

* on
the screening length of the magnetic interaction[see subset
(a) of Fig. 4] has been found. As can be observed in Fig. 14,
the functionTlsrd exhibits also anR dependence, especially
at low densities. This is in contrast to predictions of the
HSMF and SCMF theories which lead to values ofTl

* sr*d
independent ofR [see dashed curves in Fig. 14]. However at
larger densitiessr* .1d all the OZ/SMSA/FC functions be-
gin to converge to the same curve, which is almost a straight
line, and theR dependence vanishes. This line does not co-
incide with the HSMF and SCMF results.

IV. CONCLUSIONS

We have formulated a generalization of the integral equa-
tion formalism for symmetric binary mixtures in order to
study phase coexistence properties of Ising spin fluids in the
presence of an external magnetic fieldH. Mapping the spin
system onto the binary mixture shows that the calculations
for the soft-core Ising fluid at a certain magnetic field reduce
in the mixture picture to the calculations at a certain value of
the chemical-potential difference of the constituents of the
mixture. This introduces a field constraint to the OZ equa-
tions and modifies the MSA closure to the SMSA ansatz. It
has been demonstrated that the resulting OZ/SMSA/FC ap-
proach is able to describe adequately the phase behavior of
such models. Depending on the ratioR of the strengths of the
magnetic and nonmagnetic interactions inherent in the spin

fluid system, four types of thermodynamic phase diagrams
have been identified.

As has been established, the OZ/SMSA/FC approach pro-
vides us with more accurate predictions in comparison to
those of the MF theory and corroborates the MF global phase
diagram, changing of course the boundary values ofR which
separate the different topologies. It is expected that some
other more complicated schemes, such as the SCOZA, for
example, should lead to a higher precision of the calcula-
tions. However, they are not yet developed in their present
formulations to be directly applied to magnetic fluids with
soft-core repulsion potentials. Due to their high level of so-
phistication, they meet considerable computational difficul-
ties in actual implementations. On the other hand, the ap-
proach proposed here can be used for systems with arbitrary
potentials at relatively low computational costs.

The OZ/SMSA/FC scheme can also be extended to mag-
netic systems where spins take more than two discrete values
(they map onto a nonmagnetic multicomponent mixture).
The present SMSA can be applied to soft XY and Heisenberg
fluids (replacing the discrete external field constraint[Eqs.
(9) and (18)] by its continuous spin counterpart, such as the
Lovett equation[50], for instance). These questions as well
as the problem of improving the thermodynamic self-
consistency of the integral equation approach is left for fu-
ture considerations.
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FIG. 14. The para-ferro magnetic coexistence curves evaluated
at H=0 using the OZ/SMSA/FC theory for the soft-core nonideal
Ising fluid with z1

* =z2
* =1 at different values of the system param-

eter, namely, top to bottom,R=0.1, 0.12, 0.14, 0.17, 0.215, 0.29,
0.4, and`. The results of the HSMF and SCMF approaches are
plotted as the short- and long-dashed curves, respectively.

FIG. 13. Global phase diagram of an Ising fluid. Type I contains
at H=0 a tricritical point, where the magnetic transition line and
two wing lines, existing for arbitrary ±H, meet. Type IIa contains a
tricritical point (at H=0) and the gas-liquid critical lines(for ±H),
ending in a critical end point at finite magnetic field, while the wing
lines exist for arbitrary magnetic field. Type IIb contains a tricritical
point (at H=0) and the gas-liquid critical lines(for ±H) extending
to infinite magnetic field, whereas the wing lines end in a critical
end point at finite magnetic field. Type III contains only gas-liquid
critical lines extending to infinite values of magnetic field, and the
magnetic transition line ends in a critical end point atH=0.
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